
 2005:1 Qercus 273 35

Last time we went into some detail
on how a Basic program starts life;
and left you with some homework.
So let's have a look at the answers
first:

What happens if you assign a real
number to an integer variable?
The number actually assigned is
just the integer part of the number
eg integer%=6.58 results in
integer% holding the value 6. No
'rounding' up takes place.

What happens if you assign an integer
number to a real variable?
No change. You can do this.

What is the effect of the brackets in
Line 120?
They force the order in which the
sub-calculations take place. In this
particular case the answer to the
sum (73) would be the same with
or without the brackets. But the
important practical question is
whether - without any brackets -
you would expect to get the answer
73? Or, putting the question
another way, are you confident that
you know all Basic's 'precedent
rules' for sums like this? If not, then
use pairs of brackets freely to
ensure you get what you mean to
get.

O.K. Let's move on.

This time we are going to introduce
Basic 'Procedures' and 'Functions'.

(It is an interesting bit of trivia that
in non-Wimp programs PRINT
plays a big part and is possibly the
most frequently used keyword.
Conversely, in Wimp programs,
you rarely use PRINT at all. For

instance, in the popular Dr Wimp
library - comprising over 250
functions - there is only 1 use of
PRINT.)

Procedures and
Functions

If we refer back to our Prog1a from
last time, you'll recall that its
complete listing was as shown
below left.
Now look at this alternative—2a:

New series — Starting BASIC

Ray Favre adds a second building
blocks in this series on Basic BASIC.

2: Procedures
and Functions

Prog 1a
This is the program from last time

36 Qercus 273 2005:1

Starting BASIC

Procedures

If you type and run Prog2a it will
do exactly the same as Prog1a.

So, what has been done and why is
it better?

What we have done is to extract
some actions from the main flow of
the program and re-located them in
custom-built 'Procedures' and
'Functions'. In Basic the
definition of a particular Procedure
is held within a structure
commencing with the two
keywords DEF and PROC and
ending with the keyword
ENDPROC. Each procedure is
defined by a name, and specific
values can be sent to the procedure
by attaching 'parameters' to the
definition.

Thus, at Lines 200-230 above the
Procedure is
defined and we have decided that it
shall have one parameter—namely,

held in a pair of
brackets immediately following the
name. The programmer has a free
choice over the number and types
of parameter to be used in any
PROC—including no parameters
at all.

When we want the action defined
by a DEF PROC to take place we
simply 'call' the PROC—as in Line
30. There is no limit to the number
of times we can call a PROC and
here we have done it a second time
at Line 60.

When we call a PROC we must
ensure that the call includes the
right number and type of
parameter values. With

there is only
one parameter and it is a string
variable—so each call we make to

must include
a string as a parameter. At Line 30
we have used the already declared
string variable as the
parameter—whereas, at Line 60,
we have used a direct string as the
parameter. Either is acceptable
(although, generally speaking, the
form at Line 30 is better practice).

is a trivial
example: its action is merely to
PRINT whatever string is sent to it
by the call "First Try" at Line 30
(via String$) and "Second Try" at
Line 60. Most PROCs define more
complicated actions than this.

Functions

Complementing PROCs are
'Functions' or FNs. This time the
definition is held in a construction
which starts with the Basic
keywords DEF and FN, followed
by a name and any parameters as
before. However, the end of a
Function definition is signified by a
sometimes-confusing-to-beginners
Basic statement beginning with the
= character. Lines 250-270 show
the structure of a Function
definition—repeated below:

FNs are called in a different way to
PROCs. Line 100 shows the
difference: here we have a
statement which requires the
program to PRINT
something—and that something is
whatever FNmultiply 'returns'.
We could have equally used:

Either way, a Function always
'returns' a value—which might be a
real or integer number or a string:
it is the programmer's decision.

Accordingly, the call to the FN can
be made in any way that a direct
value (of the same type as the
return value) could be used. In the
listing at Line 100 we have

substituted the FN for a value to
acted on directly by PRINT—and
in the alternative shown just above
we have substituted the FN for a
value assigned to a variable. (Had
the FN returned a string, then it
could be used as a direct substitute
in any Basic statement where a
string could legitimately appear.)

Our final replacement action is in

 which
deliberately demonstrates that
different types of parameters can be
used at will: here, one integer
number and two real
numbers—and we could have
included string parameters as well
if required.

Note that when more than one
parameter is used in a DEF
PROC/FN they are all held within
just the one pair of brackets and
each is separated by a comma. If
there were no parameters then
there would be no bracket at the
end of the PROC/FN name.

It is also worth mentioning at this
stage that a DEF PROC/FN can
call other defined
PROC/FNs—indeed this is usually
to be encouraged, see below.

PROCs & FNs in practice

So what has this done for use
(apart from making the listing
longer!)?

Firstly, please bear in mind that in
real life a DEF PROC/FN is
unlikely to be as trivial as in our
listing. For instance, a common FN
might take (as input parameters) a
real number and an integer number
of decimal places and return,
maybe as a string, the number
formatted to the specified number
of decimal places. Or a PROC
might take x/y positions and a
colour as input parameters and plot
a filled square of a certain size in
the specified colour at the specified
position.

Whatever their defined actions, the
important point is that the
programmer only has to design the

 2005:1 Qercus 273 37

Story

definition once and then it can be
used repeatedly throughout the
program. Generally, therefore,
PROC/FNs reduce the size of a
listing significantly (despite what
our trivial example might suggest).
And don't forget, a DEF
PROC/FN lovingly crafted in one
program is then capable of being
lifted into another without having
to 're-invent the wheel'.

Just as importantly, PROC/FNs
simplify and improve the structure
of the program. The main flow of
the listing is easier to follow
because it is not interrupted by too
much detail and it is broken up
into logical sections held in the
DEF PROC/FNs—which may
themselves call other PROC/FNs.

Also, by breaking the program up
into smaller lumps, if an action
needs modification it is usually
much easier and safer for the
programmer to address this when
the action is limited and confined
to a DEF PROC/FN.

The naming of the PROC/FNs
should not be considered as
unimportant. Names ought to tell
you, the programmer, broadly what
the PROC/FN is doing—as in
Prog2a. It is best to adopt a naming
policy early in your programming
'career'. Some people like to use
names like

ie using case changes to make it
easier to see the meaning. Others
prefer variations of

ie using the underscore character to
make the name easier to read.
There is no need to fear long
names: there are many utilities you
can use at the end of your
programming to reduce the name
lengths automatically if required.
The important thing when writing
a program is that it should remain
very easy for you to read and
understand—particularly when you
come back to it after a few months.

Starting Basic was introduced
in issue 271 of Qercus and
continues monthly from this
issue.

Hi. Phil Bexter. I’m not one of your Risc-nut subscribers, but I saw your competition —
“Most unusual power source...” and reckoned I’d write in. Anyone can enter—right?

I’ll just bet some clever-dick already sent in a piece about his new bio-potential rig.
‘Harness the Power Differential Across the Body’ and all that bio-pot malarkey. Oh, it
works—if you don’t mind strolling around toffed up from head to toe in a monkey-suit
with wires in. Not much good when all you want is to strip off to your skinnies and sun-
cream with your girl and a bit of music, now, is it?

Anyhow, I got a story as’ll top that, and anything else you can come up with.

See, some hard-sell merchant pushed off one of your el-cheapo Risc machines on me —
fits in your pocket, won’t fry your balls, goes for ever on one battery. So he said.

Course, it was only when I got it home I worked out as it wouldn’t run the Mini-Windows
kit off my old metalware, either. The Boss—that’s Ellie, my partner, only her old man’s
some kind of high-up Korean diplomat, and her family reckon they’re way above my
level — well, the Boss, who’s the real chiphead out of us two, reckoned maybe that’s a
plus not a minus and gave me this anti-Windows lecture. But all I wanted was to play
my MGT files and run ZigZagPro off the MyNetwork server, so I wasn’t that thrilled.

And it turns out you can’t short out a Compu-cab with that little battery, either. Well,
how was I to know? On all my mates’ gear, you can fry an egg with the charge—but
there we were, trying to fiddle the cab meter to get home, and the battery just went dead
on me, with the cab’s little electronic brain screaming for help across the network.

So we legged it. Straight across the cemetery. Well, we had to—wouldn’t you?

Only about halfway across, there was this beep as an e-mail came in, and I found
el­cheapo Digital Assistant was still working. With no battery.

Ellie said it was residual charge, but it kept going right out the front gates. Then it went
dead, like it should. But going down Church Lane, just before we got to the corner, it
picked up again. Guess where we were? right opposite the graveyard. Start to see a
pattern here?

Ellie was proper spooked, and started on about ‘the ancestors’. Couldn’t be my ancestors,
I told her, and sure as chop-suey they weren’t hers. It was when she let me get away
with the Chinese crack I knew she was serious.

So we did some tests, next day and the day after. After all, five years back, bio-pot was
all pie-in-the-sky — right?

The Boss talks about leylines and nitrogen decay. Me, I don’t give a toss. I just say I got
the only D.A. that takes so little power it runs on ectoplasm....

Cheapo
a RiscOS short story from Harriet Bazley

